
ThS. Trần Thị Thanh Nga

Khoa CNTT, Trường ĐH Nông Lâm TPHCM

Email: ngattt@hcmuaf.edu.vn

1

Assessment
 Attendance + exercise: 20%

 Midterm exam: 30%, closed-book, lab test

 Final exam: 50%, opened-book, lab test

Java Basic 2

Java programming
 Java was developed by a team led by James Gosling at

Sun Microsystems.

 Orignially called Oak, it was designed in 1991 for use in

embedded chips in consumer electronic appliances.

 In 1995, renamed Java, it was redesigned for developing

Internet applications

Java Basic 3

Java programming
 Java is:

 simple, object oriented, distributed, interpreted, robust,

secure, architecture neutral, portable, high performance,

multithreaded, and dynamic.

 It is employed for

 Web programming,

 Standalone applications across platforms on servers,

desktops, and mobile devices.

Java Basic 4

The Java Language

Specification, API, JDK, IDE
 Computer languages have strict rules of usage. You need to

follow the rules when writing a program, then the computer can
understand it.

 The Java language specification and Java API define the
Java standard.

 The Java language specification is a technical definition of the
language that includes the syntax and semantics of the Java
programming language.

 The application program interface (API) contains predefined
classes and interfaces for developing Java programs.

 The Java language specification is stable, but the API is still
expanding.

Java Basic 5

The Java Language

Specification, API, JDK, IDE

 Java is a full-fledged and powerful language that can be

used in many ways.

 Java Standard Edition (Java SE): to develop client-side

standalone applications or applets.

 Java Enterprise Edition (Java EE): to develop server-side

applications, such as Java servlets and Java Server Pages.

 Java Micro Edition (Java ME): to develop applications for

mobile devices, such as cell phones.

Java Basic 6

The Java Language

Specification, API, JDK, IDE

 Use Java SE to introduce Java programming in this subject.

 There are many versions of Java SE. Sun releases each

version with a Java Development Toolkit (JDK).

 For Java SE 6, the Java Development Toolkit is called JDK

1.6 (also known as Java 6 or JDK 6).

Java Basic 7

The Java Language

Specification, API, JDK, IDE

 Use a Java development tool (e.g., NetBeans, Eclipse) -

software that provides an integrated development

environment (IDE) for rapidly developing Java

programs.

 Editing, compiling, building, debugging, and online help are

integrated in one graphical user interface.

Java Basic 8

A simple Java program

public class Welcome {

 public static void main(String[] args) {

 // Display message Welcome to Java! to
the console

 System.out.println("Welcome to Java!");

 }

}

Java Basic 9

A simple Java program

 Line 1 defines a class.

 Every Java program must have at least one class, and class

has a name.

 Line 2 defines the main method.

 To run a class, the class must contain a method named

main. The program is executed from the main method.

 A method is a construct that contains statements.

 System.out.println: prints a message "Welcome to Java!" to

the console (line 4).

 Every statement in Java ends with a semicolon (;).

Java Basic 10

Creating, Compiling, and Executing

Java Basic 11

Creating, Compiling, and Executing

 If there are no syntax errors, the compiler generates a

bytecode file with a .class extension.

 The Java language is a high-level language while Java

bytecode is a low-level languag.

Java Basic 12

 The bytecode is similar to machine

instructions and can run on any platform

that has a Java Virtual Machine (JVM).

 The virtual machine is a program that

interprets Java bytecode.

 Java bytecode can run on a variety of

hardware platforms and operating

systems.

Java Basic 13

Creating, Compiling, and Executing

Writing Simple Programs
 Writing a program involves designing algorithms and

translating algorithms into code.

 An algorithm describes how a problem is solved in terms of

the actions to be executed and the order of their execution.

 Algorithms can help the programmer plan a program before

writing it in a programming language.

 Algorithms can be described in natural languages or in

pseudocode (i.e., natural language mixed with

programming code).

Java Basic 14

Writing Simple Programs
1. Read in the radius.

2. Compute the area using the following formula:

 area = radius * radius * π

3. Display the area.

Java Basic 15

Writing Simple Programs

 When you code, you translate an algorithm into a program.

public class ComputeArea {

 public static void main(String[] args) {

 // Step 1: Read in radius

 // Step 2: Compute area

 // Step 3: Display the area

 }

}

Java Basic 16

Writing Simple Programs
 The program needs to read the radius entered from the

keyboard.

 Reading the radius.

 Storing the radius.

 To store the radius, the program needs to declare a symbol

called a variable.

 A variable designates a location in memory for storing data

and computational results in the program.

 A variable has a name that can be used to access the memory

location.

Java Basic 17

Writing Simple Programs

 Using x and y as variable names?

 Choose descriptive names: radius for radius, and area for

area.

 To let the compiler know what radius and area are, specify

their data types.

 Variables such as radius and area correspond to memory

locations.

 Every variable has a name, a type, a size, and a value.

Java Basic 18

Writing Simple Programs

public class ComputeArea {

 public static void main(String[] args) {

 double radius; // Declare radius

 double area; // Declare area

 // Assign a radius

 radius = 20; // New value is radius

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle of
radius " + radius + " is " + area);

 }

}

Java Basic 19

Reading Input from the Console

 Java uses System.out to refer to the standard output

device and System.in to the standard input device.

 The output device is the display monitor,

 The input device is the keyboard.

 Use the println method to display a primitive value or a

string to the console.

 Use the Scanner class to create an object to read input

from System.in:

 Scanner input = new Scanner (System.in);

Java Basic 20

Reading Input from the Console

Java Basic 21

import java.util.Scanner; //Scanner is in the java.util package

public class ComputeAreaWithConsoleInput {

 public static void main(String[] args) {

 // Create a Scanner object

 Scanner input = new Scanner(System.in);

 // Prompt the user to enter a radius

 System.out.print("Enter a number for radius: ");

 double radius = input.nextDouble();

 // Compute area

 double area = radius * radius * 3.14159;

 // Display result

 System.out.println("The area for the circle of radius "
 + radius + " is " + area);

 }

}

Reading Input from the Console

Java Basic 22

Finger Exercise
 Reading 3 numbers from the keyboard, and displays their

average.

Java Basic 23

import java.util.Scanner; // Scanner is in the java.util package

public class ComputeAverage {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);//Create a Scanner object

 // Prompt the user to enter three numbers

 System.out.print("Enter three numbers: ");

 double number1 = input.nextDouble();

 double number2 = input.nextDouble();

 double number3 = input.nextDouble();

 // Compute average

 double average = (number1 + number2 + number3) / 3;

 // Display result

 System.out.println("The average of " + number1 + " " + number2 + "
 "+ number3 + " is " + average);

 }

}

Finger Exercise

Java Basic 24

Identifiers
 ComputeAverage, main, input, number1, number2,

number3,… are called identifiers.

 All identifiers must obey the following rules:

 An identifier is a sequence of characters that consists of

letters, digits, underscores (_), and dollar signs ($).

 An identifier must start with a letter, an underscore (_), or a

dollar sign ($). It cannot start with a digit.

 An identifier cannot be a reserved word.

 An identifier cannot be true, false, or null.

 An identifier can be of any length.

Java Basic 25

Identifiers

 Java is case sensitive, area, Area, and AREA are all

different identifiers.

 Identifiers are for naming variables, constants, methods,

classes, and packages.

 Descriptive identifiers make programs easy to read.

 Do not name identifiers with the $ character.

 The $ character should be used only in mechanically generated

source code.

Java Basic 26

Reserved Words
 Literals

 null true false

 Keywords

 abstract assert boolean break byte case catch
char class continue default do double else
extends final finally float for if implements
import instanceof int interface long native new
package private protected public return short
static strictfp super switch synchronized this
throw throws transient try void volatile while

 Reserved for future use
 byvalue cast const future generic goto inner
operator outer rest var volatile

Java Basic 27

Variables
 Variables are used to store values to be used later in a

program.

 They are called variables because their values can be

changed.

 Example: You can assign any numerical value to radius and

area, and the values of radius and area can be reassigned.

 Variables are for representing data of a certain type.

 To use a variable, you declare it by telling the compiler

its name as well as what type of data it can store.

Java Basic 28

Variables
 The variable declaration tells the compiler to allocate

appropriate memory space for the variable based on its

data type.

 Syntax:

 datatype variableName;

 Examples :

 int count;

 double radius;

 double interestRate;

Java Basic 29

Declaring Variables
 The data types int, double, char, byte, short, long, float,

char, and boolean.

 If variables are of the same type, they can be declared

together, they are separated by commas:

 datatype variable1, variable2, ..., variableN;

 For example:

 int i, j, k;

Java Basic 30

Naming Variables
 By convention, variable names are in lowercase.

 If a name consists of several words, concatenate all of

them and capitalize the first letter of each word except the

first.

 Examples: radius and interestRate.

Java Basic 31

Initializing variables
 Variables often have initial values.

 Declare a variable and initialize it in one step: int count = 1;

 The next two statements are same: int count; count = 1;

 You can also use a shorthand form to declare and initialize

variables of the same type together.

 int i = 1, j = 2;

 TIP:

 A variable declared in a method must be assigned a value before

it can be used.

 You should declare a variable and assign its initial value in one

step  make the program easy to read and avoid programming

errors.

Java Basic 32

Assignment Statements

 You can assign a value to it by using an assignment

statement.

 variable = expression;

Java Basic 33

Assignment Expressions
 An expression represents a computation involving values,

variables, and operators that, taking them together, evaluates
to a value.

 int x = 1;

 double radius = 1.0;

 x = 5 * (3 / 2) + 3 * 2;

 x = y + 1;

 area = radius * radius * 3.14159;

 To assign a value to a variable, the variable name must be on
the left of the assignment operator:

 1 = x  Right or wrong?

Java Basic 34

Assignment Expressions

 An assignment statement is also known as an assignment

expression.

 Example:

 1. System.out.println(x = 1);

 which is equivalent to: x = 1; System.out.println(x);

 2. i = j = k = 1;

 which is equivalent to: k = 1; j = k; i = j;

Java Basic 35

Named Constants
 The value of a variable may change during the execution

of a program, but a named constant or simply constant

represents permanent data that never changes.

 In ComputeArea program, π is a constant. If you use it

frequently, you don’t want to keep typing 3.14159 

declare a constant for π

 Syntax:

 final datatype CONSTANT_NAME = VALUE;

 By convention, constants are named in uppercase: PI, not

pi or Pi.

 Java Basic 36

Named Constants
 There are three benefits of using constants:

 (1) you don’t have to repeatedly type the same value;

 (2) if you have to change the constant value (e.g., from 3.14

to 3.14159 for PI), you need to change it only in a single

location in the source code;

 (3) a descriptive name for a constant makes the program

easy to read.

Java Basic 37

Numeric Data Types and Operations

 Every data type has a range of values.

 The compiler allocates memory space for each variable or

constant according to its data type.

 Java provides eight primitive data types for numeric

values, characters, and Boolean values.

Java Basic 38

Primitives: Integers

 Signed whole numbers

 Initialized to zero

Java Basic 39

Categories:

a. integer

b. floating

c. character

d. boolean

1. byte

2. short

3. int

4. long

Size: 1 byte

Range: -27  27 - 1

Size: 2 bytes

Range: -215  215 - 1

Size: 4 bytes

Range: -231  231 - 1

Size: 8 bytes

Range: -263  263 - 1

Primitives: Floating Points

 "General" numbers

 Can have fractional parts

 Initialized to zero

Java Basic 40

Categories:

a. integer

b. floating

c. character

d. boolean

1. float

2. double

Size: 4 bytes

Range: ±1.4 x 10-45
 ±3.4 x 1038

Size: 8 bytes

Range: ±4.9 x 10-324
 ±1.8 x 10308

Primitives: Characters

 Char is any unsigned Unicode character

 Initialized to zero (\u0000)

Java Basic 41

Categories:

a. integer

b. floating

c. character

d. boolean

char Size: 2 bytes
Range: \u0000  \uFFFF

Primitives: Booleans
 boolean values are distinct in Java

 Can only have a true or false value

 An int value can NOT be used in place of a boolean

 Initialized to false

Java Basic 42

Categories:

a. integer

b. floating

c. character

d. boolean boolean
Size: 1 byte
Range: true | false

Numeric Operators

 The operators for numeric data types include the standard

arithmetic operators: addition (+), subtraction (–),

multiplication (*), division (/), and remainder (%).

Java Basic 43

Numeric Literals

 A literal is a constant value that appears directly in a

program.

 int numberOfYears = 34;

 double weight = 0.305;

 Integer Literals:

 An integer literal is assumed to be of the int type, whose

value is between – 2147483648 và 2147483647

 To denote an integer literal of the long type, append the

letter L or l to it (e.g., 2147483648L).

Java Basic 44

Floating-Point Literals
 Floating-point literals are written with a decimal point.

 By default, a floating-point literal is treated as a double

type value: 5.0 is considered a double value.

 100.2f or 100.2F

 100.2d or 100.2D.

 Scientific Notation

 Floating-point literals can also be specified in scientific

notation

 1.23456e+2, the same as 1.23456e2,

 1.23456e-2 =1.23456 * 10-2= 0.0123456.

 E (or e) represents an exponent

Java Basic 45

Finger Exercise
 Converts a Fahrenheit degree to Celsius using the formula

 celsius = (5/9)* (fahrenheit – 32).

Java Basic 46

Fahrenheit To Celsius
public class FahrenheitToCelsius {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter a degree in Fahrenheit:
");

 double fahrenheit = input.nextDouble();

 // Convert Fahrenheit to Celsius

 double celsius = (5.0 / 9) * (fahrenheit - 32);

 System.out.println("Fahrenheit " + fahrenheit
 + " is " + celsius + " in Celsius");

 }

}

Java Basic 47

Shorthand Operators

Java Basic 48

Shorthand Operators

Java Basic 49

Shorthand Operators
 Example 1:

 int i = 10;

 int newNum = 10 * i++;

 Example 2:

 int i = 10;

 int newNum = 10 * (++i);

 Example 3:

 double x = 1.0;

 double y = 5.0;

 double z = x–– + (++y);

Java Basic 50

Numeric Type Conversions

 Casting is an operation that converts a value of one data

type into a value of another data type.

 Casting a variable of a type with a small range to a variable

of a type with a larger range  widening a type.

 Casting a variable of a type with a large range to a variable

of a type with a smaller range  narrowing a type.

 Widening a type can be performed automatically without

explicit casting. Narrowing a type must be performed

explicitly.

Java Basic 51

Numeric Type Conversions
 Example:

 System.out.println((int)1.7);

 System.out.println((double)1 / 2);

 System.out.println(1 / 2);

 Be careful when using casting. Loss of information might

lead to inaccurate results.

 Casting does not change the variable being cast.

 double d = 4.5;

 int i = (int)d;

Java Basic 52

public class SalesTax {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter purchase amount: ");

 double purchaseAmount = input.nextDouble();

 double tax = purchaseAmount * 0.06;

 System.out.println("Sales tax is " + (int) (tax *
 100) / 100.0);

 }

}

Java Basic 53

Problem: Computing Loan Payments

 The problem is to write a program that computes loan

payments. The program lets the user enter the interest

rate, number of years, and loan amount, and displays the

monthly and total payments.

 The pow(a, b) method in the Math class can be used to

compute ab.

Java Basic 54

The steps in developing the program

1. Prompt the user to enter the annual interest rate, number

of years, and loan amount.

2. Obtain the monthly interest rate from the annual interest

rate.

3. Compute the monthly payment using the preceding

formula.

4. Compute the total payment, which is the monthly

payment multiplied by 12 and multiplied by the number

of years.

5. Display the monthly payment and total payment.

Java Basic 55

public class ComputeLoan {

 public static void main(String[] args) {

 // Create a Scanner

 Scanner input = new Scanner(System.in);

 // Enter yearly interest rate

 System.out.print("Enter yearly interest rate, for
 example 8.25: ");

 double annualInterestRate = input.nextDouble();

 // Obtain monthly interest rate

 double monthlyInterestRate = annualInterestRate / 1200;

 // Enter number of years

 System.out.print("Enter number of years as an integer,
 for example 5: ");

 int numberOfYears = input.nextInt();

Java Basic 56

 // Enter loan amount

 System.out.print("Enter loan amount, for example
 120000.95: ");

 double loanAmount = input.nextDouble();

 // Calculate payment

 double monthlyPayment = loanAmount *
 monthlyInterestRate / (1 - 1 / Math.pow(1 +
 monthlyInterestRate, numberOfYears * 12));

 double totalPayment = monthlyPayment *
 numberOfYears * 12;

 // Display results

 System.out.println("The monthly payment is " +
 (int) (monthlyPayment * 100) / 100.0);

 System.out.println("The total payment is " + (int)
 (totalPayment * 100)/ 100.0);

 }

}

Java Basic 57

Character Data Type and Operations

 The character data type, char, is used to represent a

single character.

 A character literal is enclosed in single quotation marks.

 char letter = 'A';

 char numChar = '4';

Java Basic 58

Escape Sequences for Special

Characters

Java Basic 59

Casting between char and Numeric

Types

 When an integer is cast into a char, only its lower 16 bits of data

are used; the other part is ignored.

 char ch = (char)0XAB0041;

 // the lower 16 bits hex code 0041 is assigned to ch

 System.out.println(ch); // ch is character A

 When a floating-point value is cast into a char, the floating-point

value is first cast into an int, which is then cast into a char.
 char ch = (char)65.25; // decimal 65 is assigned to ch

 System.out.println(ch); // ch is character A

 When a char is cast into a numeric type, the character’s Unicode is

cast into the specified numeric type.

 int i = (int)'A';//the Unicode of character A is assigned to i

 System.out.println(i); // i is 65

Java Basic 60

Casting between char and Numeric Types

 Implicit casting can be used if the result of a casting fits into

the target variable. Otherwise, explicit casting must be

used.

 The Unicode of 'a' is 97, which is within the range of a byte,

these implicit castings are fine: byte b = 'a';

 But the following casting is incorrect, because the Unicode

\uFFF4 cannot fit into a byte: byte b = '\uFFF4';

 To force assignment, use explicit casting, as follows: byte b
= (byte)'\uFFF4';

Java Basic 61

Problem: Counting Monetary Units

 Suppose you want to develop a program that classifies a

given amount of money into smaller monetary units. The

program lets the user enter an amount as a double value

representing a total in dollars and cents, and outputs a report

listing the monetary equivalent in dollars, quarters, dimes,

nickels, and pennies.

Java Basic 62

The steps
1. Prompt the user to enter the amount as a decimal number, such as

11.56.

2. Convert the amount (e.g., 11.56) into cents (1156).

3. Divide the cents by 100 to find the number of dollars. Obtain the
remaining cents using the cents remainder 100.

4. Divide the remaining cents by 25 to find the number of quarters.
Obtain the remaining cents using the remaining cents remainder 25.

5. Divide the remaining cents by 10 to find the number of dimes. Obtain
the remaining cents using the remaining cents remainder 10.

6. Divide the remaining cents by 5 to find the number of nickels. Obtain
the remaining cents using the remaining cents remainder 5.

7. The remaining cents are the pennies.

8. Display the result.

Java Basic 63

public class ComputeChange {

 public static void main(String[] args) {

 // Create a Scanner

 Scanner input = new Scanner(System.in);

 // Receive the amount

 System.out.print("Enter an amount in double, for
 example 11.56: ");

 double amount = input.nextDouble();

 int remainingAmount = (int) (amount * 100);

 // Find the number of one dollars

 int numberOfOneDollars = remainingAmount / 100;

 remainingAmount = remainingAmount % 100;

 // Find the number of quarters in the remaining amoun

 int numberOfQuarters = remainingAmount / 25;

 remainingAmount = remainingAmount % 25;

Java Basic 64

 //Find the number of dimes in the remaining amount

 remainingAmount = remainingAmount % 10;

 int numberOfDimes = remainingAmount / 10;

 //Find the number of nickels in the remaining amount

 int numberOfNickels = remainingAmount / 5;

 remainingAmount = remainingAmount % 5;

 // Find the number of pennies in the remaining amount

 int numberOfPennies = remainingAmount;

 // Display results

 System.out.println("Your amount " + amount + "
consists of \n" +

 "\t" + numberOfOneDollars + " dollars\n" +

 "\t" + numberOfQuarters + " quarters\n" +

 "\t" + numberOfDimes + " dimes\n" +

 "\t" + numberOfNickels + " nickels\n" +

 "\t" + numberOfPennies + " pennies");

 }

}
Java Basic 65

The String Type
 To represent a string of characters, use the data type called

String.

 String message = "Welcome to Java";

 String is actually a predefined class in the Java library

just like the classes System, and Scanner.

 The String type is not a primitive type. It is known as a

reference type.

Java Basic 66

The String Type
 The plus sign (+) is the concatenation operator if one of

the operands is a string.

 If one of the operands is a nonstring (e.g., a number), it is

converted into a string and concatenated with the other

string.

 String message = "Welcome " + "to " + "Java";

 String s = "Chapter" + 2;

 String s1 = "Supplement" + 'B';

 System.out.println("i + j is " + i + j);

 System.out.println("i + j is " + (i + j));

Java Basic 67

Read strings with next() method
public class ReadingStrings {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter three strings: ");

 String s1 = input.next();

 String s2 = input.next();

 String s3 = input.next();

 System.out.println("s1 is " + s1);

 System.out.println("s2 is " + s2);

 System.out.println("s3 is " + s3);

 }

}

Java Basic 68

Read strings with nextLine()

public class NextLineMethod {

 public static void main(String[] args) {

 Scanner input = new Scanner(System.in);

 System.out.print("Enter a string: ");

 String s = input.nextLine();

 System.out.println("The string entered is " + s);

}

}

Java Basic 69

Programming Style and Documentation

 Programming style deals with what programs look like.

 A program can compile and run properly even if written on

only one line, but writing it all on one line would be bad

programming style because it would be hard to read.

 Documentation is the body of explanatory remarks and

comments pertaining to a program.

 Programming style and documentation are as important

as coding. Good programming style and appropriate

documentation reduce the chance of errors and make

programs easy to read.

Java Basic 70

Appropriate Comments and

Comment Styles

 Line comment //

 Block comment /* and */

 Javadoc comments, it begins with /** and end with */.

 Use javadoc comments (/** ... */) for commenting on an

entire class or an entire method.

 Must precede the class or the method header in order to be

extracted in a javadoc HTML file.

Java Basic 71

Javadoc comments

Java Basic 72

Javadoc comments

Java Basic 73

Naming Conventions
 Use lowercase for variables and methods.

 If a name consists of several words, concatenate them into
one, making the first word lowercase and capitalizing the
first letter of each subsequent word:

 Example: radius, area, showInputDialog.

 Capitalize the first letter of each word in a class name:

 Example: ComputeArea, Math.

 Capitalize every letter in a constant, and use underscores
between words:

 Example: PI and MAX_VALUE.

Java Basic 74

Block Styles
 A block is a group of statements surrounded by braces.

There are two popular styles, next-line style and end-of-

line style.

Java Basic 75

Remember: Input and Output
 Reading Input: import java.util.Scanner;

 To reading console input:

 Scanner in = new Scanner (System.in);

 The nextLine method reads a line of input:

 System.out.print(“What is your name?”);

 String name = in.nextLine();

 To read an integer, us the nextInt method:

 int age = in.nextInt();

 The nextDouble method reads the next floating-point
number.

Java Basic 76

Sample

Java Basic 77

Exercises
1. Ex1: Viết chương trình hiển thị ra thông báo: “Please

input one integer and one floating-point number”. Sau

đó người dùng sẽ nhập vào từ bàn phím một số nguyên x

và một số thập phân y. Hiển thị ra màn hình: “Input

values are” + x + “and ” + y + “their product is ” + x*y

2. Ex2: Có phương trình như sau:

 y = 4(x-3) + 20

 Viết chương trình nhập x từ bàn phím và tính giá trị của

y, với x và y là kiểu số nguyên.

Java Basic 78

Exercises (cont)

3. Ex3: Một mile bằng 1.609km. Viết chương trình cho

người dùng nhập 1 số, sau đó chuyển đổi số đó sang km

(ví dụ, người dùng nhập 5, thì thông báo ra màn hình: 5

miles = 8.045 km.

4. Ex4: Nhập vào bán kính hình tròn. Tính chu vi và diện

tích hình tròn.

5. Ex5: Nhập vào tổng số giây. Hãy chuyển đổi sang giờ,

phút, giây và in ra theo dạng h:m:s.

Ví dụ: 1999 giây => 5:3:19

Java Basic 79

Exercises (cont)
6. Nhập vào độ cao h của một vật rơi tự do. Tính thời gian và

vận tốc của vật lúc chạm đất theo công thức sau: Thời gian

t = sqrt(2*h/g) và vận tốc v = gt.

7. Nhập vào các số thực xA, yA, xB, yB là hoành độ và tung

độ của 2 điểm A, B. Tính khoảng cách d giữa 2 điểm theo

công thức d = sqrt((xA-xB)2 + (yA-yB)2)

Java Basic 80

Reference
 Introduction to Java Programming 8th , Y. Daniel

Liang.

 Head First Java, 2nd, Kathy Sierra & Bert Bates

 Core Java Volume I Fundamentals, 8th, Cay

S.Horstmann & Gary Cornell

Java Basic 81

